Drug Analysis - Forensic Resources (2024)

Contents:

  • Reports and Publications
  • From the Blog
  • Featured Articles
  • Trainings
  • Websites
  • Books
  • Cases
  • Motions and Briefs
  • In the News
  • Experts

Drug Analysis - Forensic Resources (1)


Drug analysis is the testing of a suspected controlled substance to determine its composition. For information about forensic toxicology, or the testing of bodily fluids for controlled substances, clickhere.

Understanding Test Results

Every analysis of a suspected controlled substance should consist of at least two tests. The first is a presumptive or screening test which indicates if the sample could be a controlled substance. TheState Crime Lab’s proceduresstated in 2008 that presumptive tests are “used to evaluate evidence in determining the possible presence of controlled substances into general categories.” (That language has since been removed from lab procedures.) In some cases, crime labs perform only a screening test and then write in the lab report that further testing will be conducted at the request of the District Attorney. Substances other than controlled substances may produce positive results with these tests (false positives). Therefore, confirmatory tests that are substance-specific must be performed in order to positively identify the substance. TheState Crime Lab’s proceduresin 2008 stated that confirmatory tests are “used to conclusively identify the identity of a controlled substance.” (This language has since been removed from lab procedures.) The State Crime Lab’s procedures divide drug testing techniques intothree categoriesand describe what combinations of tests must be performed. (p. 8) The State Crime Lab’sTechnical Procedure for Drug Chemistry Analysisprovides helpful flow charts that show which test are used to analyze suspected controlled substances.

Explanation of Testing Procedures

Detailed descriptions of the tests used to analyze suspected controlled substances are contained in the expandable sections below. Information including links to the State Crime Lab’s testing procedures, explanations of how tests are performed, and limitations of the tests are contained in the expandable sections.

Presumptive Tests

Color Tests
  • Instructional Videos for Chemical Color Tests:
  • Concerns for color tests: (1) False positives.Some over the counter cold medication or other substances may test positive for illegal substances using presumptive color tests. Because some drugs behave similarly, a confirmatory test is needed. (2) Color tests may only give an indication of a class of drug present. (3) A color test cannot conclusively identify the presence of a substance.
  • Case Law:InState v. Carter(2014), the NC Court of Appeals found the trial court abused its discretion by allowing an officer to testify that a narcotics indicator field test kit indicated the presence of cocaine on items of evidence where the State failed to demonstrate the reliability of the kit.
  • To reduce the variability in results due to subjective analysis, good laboratory practices include running a positive control for visual comparison with the evidence sample.
  • Typically a lab report from the State Crime Lab will only include the name of the test and the resulting color (or may simply state that the expected color change occurred).
  • Link to the State Crime Lab’sprocedure– Note the quality control check that is required on p. 2.
  • Law Enforcement and Corrections Standards and Testing Program– National Institute of Justice standards for color test reagents and kits for the preliminary identification of controlled substances.
  • Helpful questions to consider: Was the required quality control check performed? The reagent lasts for only X days – do you know the age of the reagent? How was the resulting color measured – was it compared to a color standard or simply eye-balled? Was the resulting color recorded (photographed)? What precautions were taken to avoid cross-contamination? If performed by a law enforcement officer, what training does he/she have to perform this test?
  • Law enforcement officers may use color tests to check for controlled substances while in the field. They typically use a kit that is produced commercially, for example, by NC companySirchie. An attorney may have to determine which of the tests below is in the kit.
    1. Marquis Reagent
    2. Cobalt Thiocyanate Reagent (Scott’s Test)
    3. Duquenois-Levine
    4. Ferric Chloride
    5. Koppanyi
    6. Potassium Permanganate
    7. Ehrlich’s, Van Urk’s, or p-dimethylaminobenzaledhyde (PDMAB)
    8. Froehde’s
    9. Mecke’s
    10. Other tests
Physical Examination

Includes techniques (visual examination and microscopic examination) to understand the physical properties and characteristics of substances.

  • Visual Examination– for pills,NCSCL’s procedureis for analysts to identify a pharmaceutical preparation by physical characteristics and markings. This means the pill is compared to pictures and descriptions in reference materials such as Micromedex, The Physician’s Desk Reference, The Logo for Tablets and Capsules or websites. Visual examination is to be used for “preliminary examination only.” (p. 7) InState v. Wardthe NC Supreme Court held that visual identification of controlled substances is not reliable enough to be admitted in criminal trials, and that a chemical analysis is required. For further discussion see the various posts on the subject on the NC Criminal Lawblog. SWGDRUG allows pharmaceutical indicators as a class B identification of pills. This means that 2 other identification methods are necessary in order to positively identify a pill as a controlled substance.
  • Microscopic examination– using a microscope to examine the characteristics and properties of a substance too small for the naked eye.
    • Polarized light microscopy – contrast-enhancing technique that improves the quality of the image obtained by equipping these microscopes with a polarizer and an analyzer (second polarizer).
    • Microcrystalline test – a substance reacts with a reagent forming an insoluble crystal. The shape of the crystal suggests the type of drug. These tests are rapid and do not require the isolation of the drug prior to testing.
    • Polarized light microscopy with microcrystalline testscan be used to presumptively identify drugs.The following list indicates various reagents that can be exposed to the drug for analysis using the microcrystalline test with microscopy. Proper reagent preparation and procedures are provided by the NC State Crime Lab Guidelines.
      • Heroin and caffeine: mercuric chloride, hydrochloric acid
      • Barbiturates:Wagenaar reagent (cupric sulfate), sodium hydroxide, sulfuric acid
      • Cocaine and phencyclidine (PCP): gold chloride in acetic acid, hydrochloric acid
      • Plant particles from marijuana, hashish:concentrated sodium hydroxide, petroleum ether, chloroform, chloral hydrate
      • Amphetamines and methamphetamines:gold chloride in water, gold chloride in phosphoric acid, sodium hydroxide
      • Excipients and diluents: hydrochloric acid, methanol, distilled water
      • Propoxyphene:acetic acid, gold chloride in acetic acid
    • Concerns:(1) Impurities may cause unusual crystal formation. (2) Check reagents with known standard of drug before performing an actual procedure.(3)Proper storage of reagents.
  • Macroscopic examination– examining the properties and characteristics of the substance that are observable by the naked eye.
    • For descriptions and images of illegal drugs, see the following sources:
  • For Marijuana– The United Nations Office on Drugs and Crimerecommendsa combination of color test, thin-layer chromatography and physical (macroscopic and microscopic) examination as a minimum analytical approach for the identification of cannabis products.

Confirmatory Tests

Gas Chromatograph/Mass Spectrometer (GC/MS)
  • Link to the State Crime Lab’sprocedure
  • Characteristics
    • Specific
    • Considered the “gold standard” of drug identification
    • Most definitive and reliable of the confirmatory tests
  • How it works
    • GC
      • A sample is injected via a port into the gas chromatograph and converted to gas form (vaporized). The vaporized sample is then transported by helium gas through a long coilingcolumn. The column is then subjected to varying temperatures which results in the separation of compounds based on volatility (how easily a substance can be vaporized). Eventually, all molecules will reach the end of the column where they enter the detector. After detection, a computer program will generate achromatogram, which will show peaks for each of the molecules separated by the GC. The higher the quantity of molecules of the same kind that reach the detector, the higher the peak for that molecule will be. The same is true for the inverse as well.
        • Videodemonstration of how a GC column works.
        • Videoof a scientist performing the GC procedure.
      • The amount of time it takes for a molecule to move through the entire machine and be detected by the detector is called the retention time. Analysts may use these retention times to differentiate between different compounds. However, the retention times alone are not reliable indicators of what compound is present. A specific compound will have a known retention time, but multiplecompoundsmay have the same retention time in the same chromatogram. In order to distinguish and identify which compounds made the peaks, a mass spectrometer is used.
    • MS
      • A mass spectrometer will determine the exact molecular weight of a molecule or compound. A previously separated sample (flowing directly from GC after detection) or a pure sample (injected) must be ionized for mass spectrometry. The sample, now broken down into molecules, is subjected to anionization source, a beam of steadily flowing electrons, which blasts the molecules and causes them to break apart into positively charged particles, or ions. Only positively charged ions will continue through the machine. Next, the ions travel through the mass analyzer, orquadrupolefilter. The mass analyzer uses an electromagnetic field to separate the ions based on molecular weight. In a routine drug analysis performed by the laboratory, the analyst will already know the molecular weights of the drugs that are frequently detected. It is unnecessary and impractical to know the molecular weight of every compound in a substance. Therefore, to isolate these specific drugs at their known molecular weights, the scientist will manipulate the experimental environment (such as flow rate, type of gas used, temperature, etc.) in previously tested and scientifically accepted ways to produce the range of molecular weights required for analysis. This manipulation will allow only ions between the desired molecular weights to pass through the machine. Ions that flow through the mass analyzer without being filtered will reach the mass detector. The mass detector will count the number of ions with a specific mass. These detections will be translated by a computer program into a massspectrum.
    • Together
      • A chromatogram (from the GC) and a spectrum (from the MS) can be used together to determine a molecule’s identity. Solely using GC results to identify a compound may lead to inaccurate conclusions. As mentioned earlier, a molecule will have a specific retention time, but a specific retention time does not identify a specific molecule. The analyst will use the spectra to determine the molecular weight of the molecule that generated the peak at a specific retention time. The molecular weight at that retention time will eliminate incorrect identities and narrow down the potential identities to one. The retention time, molecular weight, and patterns of both the chromatogram and spectrum must all match a known standard to be conclusively identified. Differences should not be disregarded unless specifically permitted in the lab procedures.
  • Limitations
    • A mass spectrometer cannot distinguish between compounds in mixed samples. A sample must be separated prior to MS testing. A gas chromatograph is used to separate the impurities out of a sample in preparation for mass spectrometry. The mass spectrometer will measure the atomic weight of the compounds that were separated by the gas chromatograph.
    • MScannot differentiatebetween molecules that have the same molecular weight but have chemical structures that are mirror images (also known as enantiomers). This is the case specifically with pseudoephedrine and ephedrine. Subsequent FTIR testing may be necessary to distinguish enantiomers.
    • GC/MS will detect the presence of methamphetamine, however, it will not differentiate between methamphetaminestereoisomers.L-Methamphetamineis the active ingredient in the over-the-counter cold medication Vick’s VapoInhaler. This ingredient has different effects on the human body and is completely legal. It is commonly labeled as levmetamfetamine to signify that is the legal form of methamphetamine. The other isomer, D-Methamphetamine, is not legal, but will create the exact same peaks on a GC/MS as the L-form does. It is important for the lab to quantitate how much of each stereoisomer are present, which can be done by means of percentages.Some laboratorieswill allow up to 20% of the D isomer to be present before reporting positive test results for illegal methamphetamine. Thisblog postexplains the concepts of chirality and sterochemistry as they apply to GC/MS testing of suspected methamphetamine.
    • If a sample contains a high concentration of pseudoephedrine or ephedrine, it is possible for an “artifact peak” to appear on a GC/MS chromatogram. If not correctly identified as an artifact peak, the sample may be misidentified as methamphetamine. This peak is created by a reaction at the injection point under certain experimental conditions. At higher temperatures (see Hornbeck et al, “Detection of GC/MS Artifact Peak as Methamphetamine,” Journal of Analytical Toxicology (1993) which determined that at 300 degrees an artifact peak existed, while at 185 degrees it did not) pseudoephedrine and ephedrine will react with 4-carboxyhexafluorobutyrl, pentafluoropropionyl, heptafluorobutyryl, and a few other substances to create an artifact peak that is similar to that of methamphetamine. This artifact peak can be eliminated by adding sodium periodate to the urine sample before GC extraction.
    • Malfunctions in the equipment can occur. The injection point septum is a part of the machine that has the potential to wear. This port only lasts 100-200 injections. The injection port temperature, which is selected by the analyst, may be high or low causing a shortened septum life span, decreased sensitivity, poor separation of liquid material, or decomposition of the sample.
  • Considerations
    • Is the machine is properly maintained and calibrated? Were the samples prepared properly by the analyst? Are any reagents out-of-date? Were negative controls, positive controls, and blanks properly used? Was the analyst following the protocol properly?
    • Did the analyst perform an individualized interpretation or did s/he rely on the computer generated comparison to the library of standards?
    • Interpretation of only the chromatogram (chart generated by the gas chromatograph) or a spectrum (chart generated from the mass spectrometer) is not sufficient. Both the chromatogram and spectrum must be interpreted together and a final identification must be supported by both.
Gas Chromatography and High Performance Liquid Chromatography
  • Characteristics
    • Non-specific
    • Used for molecules with high molecular weights.
    • Similar to GC, but where the GC is filled with gas, the HPLC column is filled with liquid solvent or solvent mixture.
    • The State Crime Laboratory uses this technique for quantitation of methamphetamine in drug analysis cases.
  • How it works
    • HPLC can be used for qualitative identification: figuring out what is in a sample. HPLC is a separation technique that uses a stationary and mobile phase, a pump, and a detector to separate the compounds in a mixture. The result of the process is a computer generated graph known as a liquid chromatogram.
    • First, a small portion of the sample (approximately 5 to 20 µL) is injected into the stationary phase or column. The stationary phase is a small tube, also known as a column that is 3-5 microns in diameter and packed with microscopic particles. Next, the liquid mobile phase is pumped by the exterior pump through the machine. The mobile phase is similar to the gas flowing through a GC. The liquid mobile phase flows through the stationary phase similarly to how water flows through a water filter. The stationary phase separates the molecules in the sample, carrying them down the column at different rates. Eventually, the molecules will travel through the column and reach the detector at the end. The detector will record which molecules are present, and also will record the number of molecules of the exact same chemical makeup are detected. As with a GC, the time it takes the molecule to travel through the column and be measured by the detector is called the molecule’s retention time. Similarly, the greater the number of molecules present in the sample, the higher the intensity of the peaks.
    • HPLC can also be used for quantitative measurement: figuring out how much of a compound is in a sample. A calibration curve is used to calculate the concentration of the sample.
  • Limitations
    • The standards used in both GC and HPLC are measured using certain conditions. The analyst chooses the speed of the gas or liquid that travels through the column. They also choose the temperature of the column for each experiment. The temperature of the column, the gas/liquid flow rates, and other factors affect the results. To recreate the experiment and replicate results, the exact conditions chosen by the analyst must be known. The same flow rate and temperature must be used if a second analyst wants to receive the same results on the earlier tested sample. If an analyst wants to compare their results to a known standard sample, they must have performed the experiment under the same conditions that the standard was performed under. As a whole, HPLC results are not as reproducible as GC results.
    • Thisanimationshows how these conditions can change the results in an HPLC chromatogram.
  • Considerations
    • A single HPLC chromatogram cannot be used to calculate the concentration of the compound of interest. A calibration curve must be used to calculate the concentration of the sample. The calibration curve must also be within the accepted ranges allowed by the experiment (QC requirements). Always check that the QC and calibration curve were in range. A calibration curve with a correlation coefficient or R2 value equal to 1.000 is the most desirable. An R2 value of greater than 0.995 is required by the State Crime Laboratory for accurate reporting.
    • An HPLC machine cannot test all ranges of concentrations. For a highly concentrated drug, a sample (here referring to a small portion of the overall evidence) will be taken from the whole and diluted to measure the diluted sample’s concentration. A concentration for the diluted sample will be calculated using the concentration curve mentioned above. The diluted sample’s concentration will be multiplied by the dilution factor to find the calculation of the entire evidentiary sample. The concentrations used in the calibration curve must encompass the concentration of the diluted sample. For example, if the analyst is reporting the concentration of the diluted sample of methamphetamine to be 55 mg/mL, and the standards used to create the calibration curve range from 0.5 mg/mL to 50 mg/mL, then the concentration is out of range and cannot be used. The analyst must either further dilute a second sample to be within the range of the calibration curve or create another calibration curve. The curve’s limits may not be extrapolated to determine a sample’s concentration. Only the concentrations within the range of the concentration curve are valid.
Fourier Transform Infrared Spectroscopy
  • Link to the State Crime Lab’sprocedure
  • Characteristics
    • Highly specific.
    • Many substances will create an unequivocal IR spectrum that is easily identifiable by analysts.
    • An IRspectrumby itself does not provide an exact chemical structure of a compound, but will provide information about functional groups that are present in the molecule.
    • Presence or absence of certain functional groups will guide an analyst as to the possible identity of a compound.
  • How it works
    • Infraredlight is light that is not visible to the human eye. FTIR measures the amount of infrared light that is absorbed by a sample. Molecules (multiple atoms held together by bonds) are constantly moving. The bonds that hold the atoms together will bend, rock, stretch, compress, or twist. These actions collectively are called vibrations. Different functional groups, mentioned above, will absorb infrared light differently and will cause the atoms to vibrate more or less frequently. How quickly the molecule vibrates is called the frequency. More frequent vibrations will create a higher frequency, and fewer vibrations will generate a lower frequency.
    • An infrared light beam, or source, is aimed directly at an instrument called aninterferometer. The interferometer uses a combination of a beam splitter, a mobile mirror, and a stationary mirror to separate the beam of light into individual wavelengths. First, the beam splitter splits the beam of infrared light at right angles into two smaller beams. One beam will hit the stationary mirror and the other will hit the mobile mirror. The angles of the mirrors allow the two separated beams to reflect, meet again, and reconstitute as one beam. Themirror mechanismseparates the light into different wavelengths that are measured at the point of reconstitution. Theinterferometerrecords this information and creates a graph called an interferogram. An interferogram records information about every frequency of light from the infrared source. Most importantly, every frequency is measured at once instead of individually as earlier scientific devices required. Once the frequencies of infrared light have been measured by the interferometer, the reconstituted beam continues through the machine to the sample. The beam is applied to the sample where it will either transmit (go through) or reflect (come back towards the source). At this point, specific frequencies of energy will be absorbed by the sample and some will transmit through. The light that does transmit through the source will reach a detector on the other side. Not only does the light that reaches the detector generate information, but the absence of some wavelengths of light, the light absorbed by the sample, also generates information for analysis. The information gathered from the detector is finally sent to a computer where a chart is created specifically for that sample. This computer generated chart is called anIR spectrum.
    • Analysts use the IR spectrum and compare the sample’s spectrum to a known reference sample. This can be done either by computer comparison, or by an individual analyst manually comparing the two spectra. Each “peak,” explained below, is representative of a bond between two atoms. Specific well-known bonds that also have definable physical/chemical characteristics are called functional groups. Common functional groups include alcohols (- OH), ketones (=O), esters (- COOCH3), ethers (-COC-), and carboxylic acids (-COOH), to name a few. Each of these functional groups, if present, will create a distinct peak that typically is easily identifiable by a trained analyst. These peaks will be a specific intensity and be found within a specific wavelength range. When analyzing a spectra, it is important to know that the presence of a peak in a certain place does not necessarily indicate that a specific functional group or bond exists in a sample’s chemical structure. However, absence of a peak in the area where a known functional group or bond would present itself does indicate that that functional group or bond does not exist in the sample’s chemical structure. Some peaks will be more or less intense due to the bond’s nearness to other bonds (the molecule’s stereochemistry), the number of the exact same type of bonds present in a molecule (aromatic C-H bonds), and many other more complex reasons. Identification of compounds by IR spectra is an art which takes a lot of practice. Analysts must not only remember the locations of where peaks should be, but must also remember the patterns common to certain types of molecules that could be present in a larger macromolecule. The comparison of the sample’s spectra to the known standards is mandatory, either manually or by a computer, and the match must be exact, and forensically, must be supported by another confirmatory test.
  • Limitations– limitations of the analysis are based on closely related materials, mixtures, and improper preparation of the sample.
    • IR cannot differentiate between isomers of the same drug.
    • For an accurate spectrum, the substance must be reasonably pure (generally >90%). Testing of pharmaceuticals using IR may be more successful than the testing of street drugs which are often impure.
    • Diamond cell IR, if used, allows smaller amounts of samples to be tested. If diamond cell IR is not used, then the amount of sample required for testing is much higher.
  • Considerations
    • Peaks from an IR spectrum are read “upside-down.” A peak, obviously poorly named, is actually observed at the lowest point on the graph, or the valley of the observed area. IR measures absorption, the opposite of transmission. Absorption and transmission are inversely related: the more a sample absorbs light, less light is actually transmitted through the sample. The more light that transmits through a sample, less light is absorbed by that sample. The y-axis of a spectra measures the percent transmission of a sample. Samples with the highest percent transmission will generate higher (deeper) peaks, and those with the lowest percent transmission will show a lower (shallower) peak or possibly no peak.
    • Relative intensities of the bands are important, any mismatch with reference spectrum negates identification. Significant for the identification of the source of an absorption band are intensity (weak, medium or strong), shape (broad or sharp), and position (cm-1) in the spectrum. Many compounds look similar, but an exact match is necessary to confirm the identity of an unknown.
  • Links
    • Overviewof the use of FTIR for analysis of controlled substances.
    • FTIR Identification– this blog post by Dr. Fred Whitehurst discusses the limitations of the FTIR for use with forensic samples.
    • Organic Chemistry Lecture– by David Van Vranken, Ph.D. of UC Irvine explaining the science behind IR Spectroscopy.
    • Videoon the science of FTIR
    • Videoof an FTIR run from start to finish.
    • For a fun and rudimentary explanation of light, see Bill Nye The Science Guy’s December 24, 1993Episode on Light and Optics.

Which Items are Tested?

When a suspected controlled substance contains many individual packages, crime labs decide which and how many samples to test by following a Sampling Plan. The State Crime Lab’s Sampling Procedurecontains three types of sampling: Administrative, Threshold, and Hypergeometric Sample Selection.

  1. Administrative Sample Selectionis used for pharmaceutical preparations (pills). One pill is chemically analyzed. No inferences are made about unanalyzed material.
    • Considerations:the State Crime Lab’s procedure does not allow analysts to infer what substances may be present in the untested pills. This means there should not be testimony about the chemical composition of pills that were not chemically analyzed. The analyst may visually inspect the untested pills and compare their appearance to pictures of pills in the Micromedex database. Visual inspection is not sufficiently reliable to identify a substance.State v. Ward, 364 N.C. 133 (2010).
  2. Threshold Sample Selectionis used when it is practicable to test individual analysis of enough units to meet a statutory threshold.
  3. Hypergeometric Sampling Planis used for samples with 10 or more packages where threshold sampling is not practicable. The analyst uses statistics to determine how many items to test in order to be able to make an inference about the untested items. The analyst will state that by testing the required number of items she has demonstrated with 95% confidence that the remaining 90% of the material contains the identified controlled substance. Section 4.10.1.1 lists how many samples must be tested for a particular population size.
    • hom*ogeneity:Each package and its contents must be visually inspected for hom*ogeneity of size, weight, color, packaging, markings, labeling, indications of tampering and other characteristics before the samples are subjected to a sampling plan. Section 4.6.2. It may not be possible to detect significant weight variations when visually examining a very small amount of a substance.
    • Extrapolation of weight:If the analyzed portion does not meet a weight threshold, additional indiscriminately chosen samples can be weighed to meet the threshold. The lab does not require that those additional samples be tested. Section 4.10.5. The lab allows analysts to extrapolate weight if it is impracticable to obtain individual weights. Section 4.10.5.1.1.
    • Previously used method:From 1996-2010, the crime lab and many other forensic labs determined the number of samples to be tested by using the √n+1 formula where n is the total number of samples. The analyst would make an inference about the chemical composition of the remaining samples after testing √n+1 samples. There was no scientific basis for using this method to determine how many samples to test. For additional information on this method, see thispaperby Fred Whitehurst, JD, Ph.D.

Residue amountswill not be tested by the State Crime Lab unless accompanied by a written request from a prosecuting attorney. If the case consists of items that are all residue amounts, analysis will be performed on items until any controlled substance is identified. See Section 4.5.2.1.

Practical Tips

For practical tips on reviewing lab reports, challenging tests, and working with experts, see the papers written byDiane SavageandDean Loven.

Reports and Publications

  • This report by the Penn Carey Law Quattrone Center provides the first-ever comprehensive analysis of presumptive drug field test usage across law enforcement agencies in the United States. Inexpensive and fast, these tests have become a tool of choice for law enforcement agencies. Unfortunately, they are notoriously imprecise and are known to produce “false positives,” leading to frequent wrongful arrests and wrongful convictions.

  • Organization of Scientific Area Committees for Forensic Evidence (OSAC) is developing documentary standards for each forensic discipline. Standards under consideration as well as approved standards are available in the OSAC Registry.

  • The Health In Justice Action Lab of the Northeastern University School of Law has created a toolkit for attorneys defending death by distribution of drugs. This toolkit will be useful to defenders in handling charges of this sort in NC, both for the old murder by distribution and the new death by distribution.

  • See pp. 133-136 for the National Research Counsel’s assessment of the analysis of controlled substances.

From the Blog

  • Spring 2024 Cannabis Update (Part II), 4/19/2024

    This update was originally posted on Apr. 10, 2024 on North Carolina Criminal Law, a UNC School of Government Blog available here. InPart Iof my Spring 2024 cannabis update, I discussed the search and seizure issues arising in North Carolina courts around cannabis. Part II explores drug identification evidence issues surrounding marijuana prosecutions and examines …

  • Spring 2024 Cannabis Update (Part I), 4/18/2024

    This update was originally posted on Apr. 8, 2024 on North Carolina Criminal Law, a UNC School of Government Blog available here. It has been a while since my last post on cannabis and criminal law issues, and it is past time for an update. In addition to a number of state cases grappling with …

  • Originally posted on North Carolina Criminal Law – A UNC School of Government Blog Readers may have heard of the plant commonly known askhator qat (orCatha edulis, for the botanically inclined). The plant is indigenous to Africa and is popular in parts of that continent, as well as parts of the Middle East, and is …

  • State v. Booth and marijuana identification, 10/26/2022

    Incase you missed it, the COA released State v. Booth on Oct. 18, 2022, dealing in part with lay opinions by officers identifying marijuana as such based on sight and odor only and without a proper lab test identifying the levels of delta-9 THC. The officer in Booth was permitted to testify that he could …

  • Hemp remains legal in NC, 7/1/2022

    With Governor Cooper signing it into law yesterday Senate Bill 455 which permanently excludes hemp from the legal definition of marijuana under state law in NC, hemp’s future as a widely-available consumer product in our state seems secure. Under the new legislation, the previous requirement that the hemp be cultivated or possessed by a grower …

  • Announcing Expert Services Project, 3/28/2022

    We want court appointed attorneys to use experts, and we want using experts to be easier for attorneys. Access to qualified expert services is essential to the provision of indigent defense. To better equip the North Carolina public defense community with the resources it needs to achieve fair and just outcomes for clients, Indigent Defense …

  • Challenging an officer’s identification of marijuana by sight or smell, 11/16/2020

    There have been several posts on this and related topics here and here. This post will attempt to compile all of the resources and walk attorneys through the process of making these challenges. N.C. Gen. Stat. § 90-87(16) provides the statutory definition of marijuana, specifically excluding from its definition industrial hemp.Industrial hemp, as defined in …

  • Newly-Developed Drug Test May Be Able to Help Distinguish Hemp from Marijuana, 8/24/2020

    In July of 2019, Virginia became the first US state to acquire a new drug test created by a team of forensic chemists in Switzerland. The 4-AP test, or “Cannabis Typification” or “Swiss Test,” purports to be able to help differentiate between hemp– a legal variety of cannabis– and marijuana. However, laboratory documentation says that …

  • Summer 2020 Hemp Update, 6/18/2020

    Originally posted on June 16, 2020 on theNorth Carolina Criminal Law blog On Thursday, June 4, 2020, the North Carolina General Assembly passedS.B. 315, referred to as the State Farm Bill, which was subsequently signed into law by the Governor. The bill was pending all last session and stalled, allegedly over a dispute about how …

  • What to watch when quarantined, 4/23/2020

    Are you done with Tiger King and don’t know what to watch next? Each of the series below is available on Netflix and offers insight into various forensic evidence methods. How to Fix a Drug ScandalThis four-episode series chronicles what happens when two drug analysts in Massachusetts commit misconduct in the lab. The series examines …

  • Click here for more blog posts on this topic

Featured Articles

Trainings

  • What’s Known and Unknown about Marijuana, NIJ

    Two podcast episodes describing how suspected marijuana is tested by forensic labs.

  • Don’t Plead to Weed Webinar

    Free webinar offered by Emancipate NC

  • Drug Analysis Webinar: Methodology Used for Presumptive Tests and Common Errors Observed


    Live webinar presented by Ed Brown, Ph.D.
    April 1, 2021, 1:00 pm
    60 min of CLE credit anticipated

    Materials: PowerPoint Slides

    This one-hour live webinar will provide attorneys having little science training with the basics about the various chemical analysis techniques employed by forensic laboratories and other contract labs around the US. Although a few technical details will be presented about each method so that a greater understanding of each technique can be obtained, we will help attendees understand the basic principles that these methods rely upon.

    We will cover methods such as presumptive tests like color tests, microcrystalline tests, spectroscopy, and immunoassay testing. Attendees will be provided with a clear foundation about these concepts and methodologies as well as about their utility and limitations for use which will aid in understanding of the forensic evidence in cases involving suspected controlled substances.

    Registration:
    This program is the second of the 2021 IDS Forensic Science Education Series. The webinars will be presented monthly and are free to attend. Attorneys who want CLE credit for attending will be billed $3.50 per credit hour by the State Bar. Use this link to register for all webinars in the series and attend any that are of interest. If you already registered for the series, there’s no need to register again. More information about the webinar series is available here.

    Presenter:
    Edward G. Brown, Ph.D. obtained his Bachelor of Science degree in Chemistry from U.C. Berkeley in 1980 and his Doctoral degree in Organic Chemistry from U.C. Davis in 1988. Two post-doctoral chemistry research fellowships from University of Auckland, New Zealand, and Yale University furthered his academic studies in medicinal chemistry and analytical chemistry techniques through 1990.

    Dr. Brown’s productivity during his career as a medicinal and organic chemistry researcher in academics and while working at several pharmaceutical companies and other laboratories has led to his co-inventorship on ten US patents and his co-authorship on over thirty research articles and conference presentations.

    Dr. Brown is also a patent agent who specializes in chemistry patent drafting and assists in patent litigation and prosecution issues for patent law firm clients in North Carolina and around the US.

    In 1991, Dr. Brown began his consulting work as an expert witness in an LSD case. He has since continued to develop his expert witness practice throughout the intervening years, and to date, has assisted nearly 100 attorneys in law firms from North Carolina, Virginia, Maryland, Pennsylvania, and many other States, as well as in Canada and Great Britain on a large variety of drug cases and DWI/DUI cases, both at the State and Federal levels. He has testified in criminal drug cases and DWI/DUI cases as a Chemistry Expert in both Federal and State courts around the United States and has been deposed as a Chemistry Expert in a patent litigation case.

  • Defending Drug Overdose Homicides Training, NACDL

    Live webinar, Sponsored by NACDL

  • Emerging Issues in Laboratory Analysis for the Differentiation between Marijuana and Hemp, NCSTL

    Presenters: Reta Newman and Michael Gilbert. Offered by National Clearinghouse for Science, Technology, and the Law. Recording and powerpoints are available.

  • Emerging Issues in Laboratory Analysis for the Differentiation between Marijuana and Hemp, NCSTL

    Join Stetson University College of Law for Emerging Issues in Laboratory Analysis for the Differentiation between Marijuana and Hemp, a scientific and legal analysis regarding the differentiation between marijuana and hemp. Ms. Reta Newman, Director for the Pinellas County Forensic Laboratory, and Mr. Michael Gilbert, Assistant Director for the Pinellas County Forensic Laboratory, will give an in-depth look at how forensic labs analyze marijuana and hemp. They will break down the process and where the legal issues arise. In addition, they will discuss the 2018 Farm Bill and look at different state statutes and the changing legal landscape.

  • The Sequel–Marijuana or Hemp: From Farm Bill to Forensic Analysis, FTCOE

    Follow up to a previous training posted here. To view this free webinar, linked here, register to create and account and then enroll in the program. Duration of the program: 2 hours.

    Due to the high attendance and interaction from Marijuana or Hemp: From Farm Bill to Forensic Analysis, the webinar held on January 15th, 2020, the Forensic Technology Center of Excellence is hosting a follow-up session to give in-depth answers to questions the speakers were unable to address in the first session.

    In the first session, experts in agricultural policy, hemp industry analytical testing, and the DEA Special Testing and Research laboratory discussed the state of forensic drug testing following the passage of the Agricultural Improvement Act of 2018 (2018 “Farm Bill.”) The webinar discussed the legal history of hemp and THC as it relates to farm policy, farming and quality testing techniques used in the hemp industry, and the DEA’s enhanced forensic testing program for the identification of suspected marijuana samples.

    Learning Objectives:

    1) Understand the 2018 Farm Bill, which created a USDA-administered hemp program, requiring the USDA to establish a regulatory framework to monitor compliance and regulate hemp production.

    2) Understand the difference between Δ9-THC and Δ9-THCA, along with the testing and quality systems being used within the hemp and marijuana industries.

    3) Provide the audience with an overview of the new analysis protocol implemented in DEA laboritories to efficiently identify marijuana submissions.

    Speakers:

    Renee Johnson; Mike Goodrich; and Dr. Sandra Rodriguez-Cruz

  • Hemp: A Forensic Perspective, FTCOE

    Forensic Sciences at RTI International is offering a free webinar program on Mar. 31, 2020.

    The presentation will discuss analytical strategies to answer the question: is the material presented for analysis an illegal product based on its total THC content?

    The question “is this sample illegal based on its psychoactive ∆9-tetrahydrocannabinol content” has been common in forensic labs for decades. Traditionally, this has been answered in a binary fashion as “yes” or “no” based on the results from a semi-quantitative analysis using GC/MS technologies. Since the passage of the Agriculture Improvement Act, also known as the Farm Bill, this question has become more complicated due in large part to the legalization of hemp as an industrial crop.

    The United States Federal Register defines industrial hemp as any part or derivative (including seeds) of the plant Cannabis sativa L. with a dry weight concentration of “tetrahydrocannabinols” not greater than 0.3% by dry weight of the plant material. Tetrahydrocannabinols specifically refer to salts and isomers of ∆9- tetrahydrocannabinol (THC). Any hemp plant material that exceeds this threshold is defined as marijuana and considered an illegal scheduled drug.

    Recently, the USDA has published guidance for the determination of total THC (0.877*[THCA] + [THC]) in hemp and hemp-derived cannabinoid products. It has been stipulated that this testing must occur in DEA registered labs and that HPLC and or GC technologies are to be used for the quantitative determinations. Here, subject matter experts discuss an orthogonal LC/MS and GC/MS analytical strategy for quantification of total THC in hemp and hemp products. They will also discuss sample preparation of various products and analytical challenges using LC and GC methodologies.

    Detailed Learning Objectives:

    a) Understand the legal definition of hemp and its differentiation from marijuana

    b) Learn about HPLC, LC/MS, and GC/MS testing strategies

    c) Understand the analytical challenges for the determination of total THC in cannabis, hemp, and cannabinoid products

  • Marijuana or Hemp: From Farm Bill to Forensic Analysis

    The Forensic Technology Center of Excellence will offer a webinar on marijuana and hemp analysis. Attendees will hear from experts in agricultural policy, hemp industry analytical testing, and the DEA Special Testing and Research laboratory to obtain a better understanding of the issues that have developed within the field of forensic drug testing since the signing of the Agriculture Improvement Act of 2018 (“2018 Farm Bill”).This webinar will provide a history of US farm policy as it relates to the legalities of hemp and tetrahydrocannabinol (THC).Information on farming and quality testing used by the hemp industry will be presented.The DEA will share their revised and enhanced forensic testing program for the effective and efficient identification of suspected marijuana submissions.

  • Understanding the impact of drug background levels in forensic laboratories

    This free webinar will present results based on a NIST-led, multi-agency collaboration focused on establishing drug background levels in forensic laboratories and understanding the implications for data quality, data integrity, and occupational health and safety.

  • Is it Hemp? An Analytical Strategy To Make Sure It Is

    Hemp must be legally differentiated from marijuana. In this free webinar, Dr. Anthony Macherone, Senior Scientist with Agilent Technologies and a Visiting Professor at the Johns Hopkins University School of Medicine, will discuss strategy for screening and quantification of THC in hemp or marijuana. Archived webinar is available for on-demand viewing.

  • 2nd Annual Online Symposium hosted by RTI and ForensicEd on May 13-17, 2019. This program offers information on best practices in forensic toxicology, drug analysis, and trace analysis such as sample preparation, method development, and forensic method validation. Presentations are geared toward forensic practitioners, but several of the sessions should be of interest to attorneys.

Websites

  • The mission of SWGDRUG is to recommend minimum standards for the forensic examination of seized drugs and to seek the international acceptance of such standards. Clickherefor a PDF of the current approved guidelines for Drug Analysis.

  • A collaboration between the Orlando Public Defender and the National Center for Forensic Science at UC Florida. The site has links to many helpful training videos that help attorneys understand forensic science evidence.

  • The National Forensic Science Technology Center created this website to explain in simplified terms the principles of each type of forensic analysis and how the analysis is performed. Topics include DNA, digital evidence, fingerprints, firearms, trace evidence, blood stains, and more.

  • This US National Library of Medicine website allows users to learn the possible identity of pills based on their appearance, color, shape, and markings.

  • This National Institute of Health searchable database allows users to search for a compound and learn more about its chemical structure, uses, properties, toxicity, and other information.

  • This website contains a library of GCMS data for compounds and is organized by molecular weight, base peak and second base peak. This library may be useful for limited purposes.

Attorneys may use or borrow these books from the IDS Forensic Library located in Durham.

Books

  • James Shellow, Cross-Examination of the Analyst in Drug Prosecutions

  • Donnell R. Christian, Forensic Investigation of Clandestine Laboratories

  • Terry Mills, III et al., Instrumental Data for Drug Analysis, Vol. 6 and 7

  • John E. Leffler, A Short Course in Modern Organic Chemistry

  • Eugene W. Berg et al., Physical and Chemical Methods of Separation

  • Ralph L. Shriner et al., The Systematic Identification of Organic Compounds (5d ed.)

  • Roger Adams et al., Laboratory Experiments in Organic Chemistry (4th ed.)

Cases

  • NCSCL drug chemistry analyst Jennifer West testified about whether fentanyl was an opiate or opioid. Trial court erred in admitting West’s testimony because she lacked training on the issue of whether fentanyl was an opiate or opioid.

  • State v. Hills (N.C. Ct. App. 2021)

  • State v. Jackson, _ N.C. App. _ (April 20, 2021)

    Evidence that cocaine was the identity of the substance was admissible not withstanding the substance being handled with bare hands and stored in a glove box where cocaine had previously been stored. The court found concerns over cross contamination went to the evidence’s weight, not matters of admissibility and authentication.

  • State v. Sasek, 844 S.E.2d 328 (2020)

    The court held that it was not plain error for the analyst to testify that GCMS testing is used to confirm results of presumptive testing but not to testify that GCMS was performed in the case at hand.

  • State v. Hewitt, 836 S.E.2d 786 (2019)(unpub)

    The court held that it was not plain error for the analyst to testify to the identity of a controlled substance without explaining what type of chemical analysis she performed. She testified she performed a color test and an instrumental analysis.

  • In August, the North Carolina Supreme Court weighed in on drug identification once again inState v. Osborne, ___ N.C. ___ (August 16, 2019). Defender Educator Phil Dixon discusses admissibility and sufficiency of evidence in drug cases in this blog post.

  • Weighing Marijuana Reference

    This document provides the relevant statutes and summarizes the case law on the issue of how marijuana should be weighed. It addresses issues such as whether water weight and mature stalks should be included. Links to the State Crime Lab’s relevant procedures are provided, as well as contact information of experts who are available to weigh suspected marijuana.

  • Today, the court of appeals reversed a defendant’s drug convictions because the indictments identified the controlled substances in question using terms that are widely used to describe the drugs, but that are neither the chemical names listed in the controlled substance schedules nor – according to the court – “trade names” for the drugs. Because more and more drug cases involve pharmaceuticals that have many names, it is worth reviewing the case. The case is State v. Sullivan. It arose when police used an informant to buy steroids from the defendant…

  • A NC Supreme Court decision finding the trial court abused its discretion by allowing the State’s expert to visually identify drugs using an insufficiently established method. The court found the expert’s use of information in Micromedex literature to make drug identification did not meet the first prong of Rule 702 as it was never established as reliable before the trial court. The court indicated that chemical analysis might be required within the bounds of “common sense.”

  • A California Attorneys for Criminal Justice (CACJ) report by John Kelly. The report is largely based on the research of Dr. Frederic Whitehurst who tested field drug test kits and exposed and documented that they render false positives with legal substances. The report focuses on the Duquenois-Levine and KN Reagent tests used to test for marijuana.

Motions and Briefs

  • Hemp 702 Motion Draft

    A draft 702 motion to exclude expert testimony from an arresting officer identifying a substance as marijuana.

  • Hemp Motion to Suppress Draft

    A draft motion to suppress evidence collected after a stop made based on the sight/smell of what the officer believes to be marijuana. Please note the motion does not contain an accompanying affidavit as required by law.

  • Motion for Discovery of Laboratory/Scientific Evidence

    Sample discovery motion regarding drug chemistry or toxicology evidence.

Drug Analysis in the News

Drug Analysis Experts

  • Christopher Michael (Mike) Bailiff, Lewisville, NC
  • Edward G. Brown, Ph.D., Durham, NC
  • Barry Funck, Tallahassee, FL
  • Lyle Liechty, Indianapolis, IN
  • Carol Murren, Shoreline, WA
  • Guy Oldaker, Ph.D., Lewisville, NC
  • Bethany P. Pridgen, MFS, Wilmington, NC
  • Amy Swaim, Wendell, NC
  • Chris Trevey, Greensboro, NC
  • Patra Watson, Columbia, SC
  • Dr. Frederic Whitehurst, Bethel, NC
  • Charles Bruce Williams, III, Ph.D., Wilmington, NC
Drug Analysis - Forensic Resources (2024)
Top Articles
Latest Posts
Article information

Author: Jamar Nader

Last Updated:

Views: 5440

Rating: 4.4 / 5 (75 voted)

Reviews: 82% of readers found this page helpful

Author information

Name: Jamar Nader

Birthday: 1995-02-28

Address: Apt. 536 6162 Reichel Greens, Port Zackaryside, CT 22682-9804

Phone: +9958384818317

Job: IT Representative

Hobby: Scrapbooking, Hiking, Hunting, Kite flying, Blacksmithing, Video gaming, Foraging

Introduction: My name is Jamar Nader, I am a fine, shiny, colorful, bright, nice, perfect, curious person who loves writing and wants to share my knowledge and understanding with you.